2025 2nd International Conference on Modeling, Natural Language Processing and Machine Learning(CMNM 2025)
Speaker
Home / Speaker

301240318105958386.jpg


Prof. Chong-Yung Chi  

National Tsing Hua University


IEEE Fellow, AAIA & AIIA Fellow

Prof. Chong-Yung Chi received a B.S. degree from Tatung Institute of Technology, Taipei, Taiwan in 1975, a M.S. degree from National Taiwan University, Taipei, Taiwan in 1977, a Ph.D. degree from the University of Southern California, Los Angeles, CA, USA, in 1983, all in electrical engineering. He is currently a Professor at National Tsing Hua University, Hsinchu, Taiwan. He has published more than 240 technical papers (with citations more than 7500 times by Google-Scholar), including more than 90 journal papers (mostly in IEEE TRANSACTIONS ON SIGNAL PROCESSING), more than 140 peer-reviewed conference papers, 3 book chapters, and 2 books, including a textbook, Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications, CRC Press, 2017 (which has been popularly used in a series of invited intensive short courses at 10 top-ranking universities in Mainland China since 2010 before its publication). His current research interests include signal processing for wireless communications, convex analysis and optimization for blind source separation, biomedical and hyperspectral image analysis, graph-based learning and signal processing, and data security and privacy protection in machine learning. Dr. Chi received the 2018 IEEE Signal Processing Society Best Paper Award, entitled “Outage Constrained Robust Transmit Optimization for Multiuser MISO Downlinks: Tractable Approximations by Conic Optimization,” IEEE Transactionson on Signal Processing, vol. 62, no. 21, Nov. 2014. He has been a Technical Program Committee member for many IEEE-sponsored and cosponsored workshops, symposiums, and conferences on signal processing and wireless communications, including Co-Organizer and General Co-Chairman of the 2001 IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC). He was an Associate Editor (AE) for four IEEE Journals, including IEEE TRANSACTIONS ON SIGNAL PROCESSING for 9 years (5/2001-4/2006, 1/2012-12/2015), and he was a member of Signal Processing Theory and Methods Technical Committee (SPTM-TC) (2005-2010), a member of Signal Processing for Communications and Networking Technical Committee (SPCOM-TC) (2011-2016), and a member of Sensor Array and Multichannel Technical Committee (SAM-TC) (2013-2018), IEEE Signal Processing Society.







383241224094110803.jpg


Prof. Weisheng Dong

Xidian University

Prof. Weisheng Dong received the B.S. degree from Huazhong University of Science and Technology, Wuhan, China, in 2004, and the Ph.D. degree from Xidian University, Xi’an, China, in 2010. From 2009 to 2010, he was a Research Assistant with the Department of Computing, Hong Kong Polytechnic University, Hong Kong. In 2010, he joined the Xidian University as a Lecturer, where he has been a Professor of the School of Artificial Intelligence. He is currently a Chang Jiang Scholar Professor of China Ministry of Education. His research interests include image restoration, deep learning and compute vision. He has served as an AE of IEEE T-IP and is currently serving as an AE of SIAM Journal on Imaging Sciences.





383241217180726741.jpg


Prof. Bin Jiang

Hunan University

Updating...








phil1.jpg


Prof. Philippe Fournier-Viger 

Shenzhen University

Philippe Fournier-Viger (Ph.D) is distinguished professor at Shenzhen University (China). Five years after completing his Ph.D., he came to China in 2015 and became full professor after receiving an important national talent title. He has published more than 400 research papers related to data mining algorithms for complex data (sequences, graphs), intelligent systems and applications, which have received more than 16,000 citations (H-Index 63-Google Scholar). He is the founder of the popular SPMF data mining library, offering more than 260 algorithms to find patterns in data, cited in more than 1,000 research papers. He is former associate editor-in-chief of the Applied Intelligence journal and has been keynote speaker for over 50 international conferences and co-edited four books for Springer. He appears in the top 0.3% of researchers for scientific influence in the Stanford list. He won the "Most Influential Paper Award" at the 2024 PAKDD conference and received seven Best Paper Awards at international conferences. Website: http://www.philippe-fournier-viger.com.


Title: Advances and challenges for the automatic discovery of interesting patterns in data

Abstract: 

Intelligent systems and tools can play an important role in various domains such as for factory automation, e-business, and manufacturing. To build intelligent systems and tools, high-quality data is generally required. Moreover, these systems need to process complex data and can yield large amounts of data such as usage logs, images, videos, and data collected from industrial sensors. Managing data to gain insights and improve these systems is thus a key challenge. It is also desirable to be able to extract information or models from data that are easily understandable by humans. Based on these objectives, this talk will discuss the use of data mining algorithms for discovering interesting and useful patterns in data generated from intelligent systems and other applications.

The talk will first briefly review early study on designing algorithms for identifying frequent patterns. Then, an overview of recent challenges and advances will be presented to identify other types of interesting patterns in more complex data such as graphs and sequences. Topics that will be discussed include high utility patterns, locally interesting patterns, and periodic patterns. Lastly, the SPMF open-source software will be mentioned and opportunities related to the combination of pattern mining algorithms with traditional artificial intelligence techniques for intelligent systems will be discussed.



Syed Muhammad Waqas.png


Assoc. ProfSyed Muhammad Waqas

Yango University

Dr. Syed Muhammad Waqas is an associate professor at the College of Artificial Intelligence, Yango University, Fuzhou, China. He received the B.S. degree from Islamia University, Pakistan, in 2015, the M.S. degree from Xi’an Jiaotong University, Xi’an, China, in 2020, and the Ph.D. degree from Xi’an Jiaotong University, Xi’an, China, in 2024. His research interests include 5G/6G wireless networks, cybersecurity, vehicular communication and mobile communication. He has published multiple academic papers in top SCI/EI indexed journals.






Adeel Akram.png


Assoc. Prof. Adeel Akram 

 Yango University

Dr. Adeel Akram is an Associate Professor at the College of Artificial Intelligence, Yango University, Fuzhou, China. He earned his Ph.D. in Computer Science and Technology from Xidian University (2019) and has held academic roles as an Assistant Professor at Xuzhou University of Technology (2019–2022) and Postdoctoral Researcher at the University of Science and Technology of China (USTC) (2022–2025). Dr. Adeel has published extensively in high-impact SCI-indexed journals, secured patents, and presented award-winning research at international conferences, earning multiple Best Presentation distinctions. His research centers on advancing artificial intelligence (AI), machine learning, and computer vision, emphasizing theoretical innovation and interdisciplinary applications in image processing and deep learning.